Ventilatori centrifughi, estrattori, torrini di estrazione, raffrescatori evaporativi

Perché ventilare gli ambienti	pag. 130
La ventilazione forzata e la ventilazione negli ambienti industriali.	
Tipologie di ventilatori Ventilatori centrifughi e assiali.	pag. 131
MTV Estrattori da parete	pag. 132
La serie MTV è composta da estrattori ideali quando sono richieste portate d'aria molto alte. La ventola, di disegno esclusivo, è autopulente e permette di ottenere massime efficienze.	
VDL - VDV - VDV/LEX - VDQ Estrattori	pag. 133
Elettroventilatori elicoidali da parete, con convogliatore sagomato in lamiera di acciaio stampato, verniciato con polvere epossidica.	
TE Torrini di estrazione	pag. 135
I torrini serie TE sono progettati per l'estrazione dell'aria in ambienti industriali. La gamma è prodotta allo scopo di unificare le strutture di ancoraggio a molteplici corpi ventilanti e permette di soddisfare le esigenze di installazione con le più svariate tipologie di coperture.	
MT - CA Raffrescatori evaporativi	pag. 138
I raffrescatori evaporativi sono macchine destinate all'umidificazione e al raffrescamento dell'aria per il controllo dell'umidità e della temperatura in luoghi chiusi. Sono particolarmente indicati in serre ed allevamenti.	
DT - TR Ventilatori centrifughi	pag. 141
Ventilatori centrifughi in grado di coprire una vasta gamma di portate e	

prevalenze. La produzione di serie prevede vari modelli con accoppiamento

diretto o a trasmissione.

LA VENTILAZIONE FORZATA

Lo scopo della ventilazione forzata è quello di assicurare la necessaria qualità dell'aria negli ambienti, rimuovendo le sostanze nocive che in essi si generano, e sostituendo l'aria espulsa con analoghi quantitativi di aria esterna.

Inoltre viene spesso utilizzata quando si vuole ottenere un raffrescamento nel periodo estivo, soprattutto negli edifici industriali dove in genere non sono previsti impianti di condizionamento dell'aria.

La ventilazione forzata assicura il corretto ricambio dell'aria nelle abitazioni residenziali, nei locali commerciali e negli stabilimenti industriali.

Gli impianti di ventilazione forzata utilizzano unità ventilanti, individuali o centralizzate, un sistema di canali ed una serie di bocchette o feritoie di prelievo ed espulsione.

LA VENTILAZIONE NEGLI AMBIENTI INDUSTRIALI

La ventilazione all'interno degli edifici industriali si realizza mediante:

- torrini, posti il più delle volte sulla copertura dell'edificio;
- ventilatori elicoidali, posti sulle finestrature dello stabilimento.

In genere per questo tipo di applicazioni si possono prevedere da tre a quindici ricambi d'aria ogni ora, secondo le caratteristiche delle lavorazioni. L'aria espulsa viene reintegrata in modo naturale dalle aperture, griglie o da un reintegro forzata attraverso altri ventilatori.

Ventilatore elicoidale

NUMERO DI RICAMBI ORARI NECESSARI PER TIPO DI AMBIENTE

Ambiente	Ricambi orari
Allevamenti bovini-suin	i 10
Allevamenti ovicoli	8
Atri d'albergo - sale - co	rridoi 4
Autorimesse	8
Bagni - docce	6
Bagni galvanici	25
Banche	6
Caffè - bar - ristoranti	10
Carpenterie - saldature	12
Centrali termiche	60
Chiese	15
Cinema - teatri	15
Colorifici	15
Concerie	18
Essiccazioni pelli	35
Fabbrica gomme	12
Fabbrica paste alimenta	ari 6
Fabbrica prodotti chimi	ci 15
Falegnamerie	6
Filature - tessiture	5
Fonderie	25
Fucine	25
Lavanderie a vapore	30
Locali forni elettrici	30
Locali forni industriali	20
Magazzini merci deperi	bili 15
Magazzini merci non de	eperibili 5
Manifatture tabacchi	12
Molini	20
Negozi vari	5
Ospedali	6
Palestre	20
Panetterie	15
Piscine	25
Sale da ballo	20
Sale da gioco	10
Sale d'aspetto	10
Scuole	6
Stabilimenti metallurgio	i 5
Supermercati	5
Tintorie	30
Tipografie	20
Toilette	30
Uffici tecnici	15

VENTILATORI

I ventilatori maggiormente utilizzati per la movimentazione dell'aria sono di due tipi: centrifughi ed assiali, in funzione della direzione dell'aria attraverso la girante.

Dal punto di vista delle prestazioni, il ventilatore centrifugo viene impiegato quando sono richieste portate medie con valori di pressione alta, mentre l'assiale viene utilizzato con portate alte e bassi valori di pressione.

VENTILATORI CENTRIFUGHI

I ventilatori centrifughi sono impiegati maggiormente per impianti centralizzati, anche dove è necessario il trasporto del materiale.

Diverse varietà di pale consentono di coprire ampie richieste di portate, prevalenze e tipologia di inquinanti da trasportate. I ventilatori centrifughi più ampiamente utilizzati sono quelli con pale curve in avanti, caratterizzati da una costruzione più compatta e leggera. Per requisiti di portata e pressione più elevati si possono preferire i modelli con pale incurvate all'indietro, che offrono maggiore efficienza.

Per l'aspirazione di trucioli o materiali comunque pesanti vengono utilizzati ventilatori a pale aperte.

VENTILATORI ASSIALI

I ventilatori assiali si suddividono in due tipi:

- elicoidali, per funzionamento a bocca libera (un esempio è dato dai tipici modelli da parete o finestra);
- intubati, per il funzionamento in impianti centralizzati.

L'impiego tipico dei ventilatori elicoidali è l'installazione a parete, o a finestra, per realizzare la ventilazione di un ambiente; la girante è di norma accoppiata direttamente al motore. Le portate d'aria possono variare da poche centinaia di metri cubi fino a diverse migliaia. La massima pressione statica, in genere, non supera i 10-15 mm H₂O.

I ventilatori assiali intubati sviluppano pressioni statiche e rendimenti sensibilmente superiori ai precedenti.

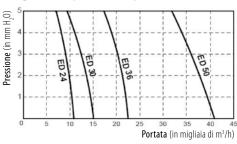
Si possono ottenere valori di pressione fino a 100 mm H₂O con portate d'aria di diverse miglia di metri cubi.

L'accoppiamento del motore può essere diretto (in questo caso il motore è a diretto contatto con il flusso d'aria) o a trasmissione (il motore viene montato all'esterno del tubo e accoppiato alla girante per mezzo di cinghie e pulegge).

DESCRIZIONE

La serie MTV è composta da estrattori ideali quando sono richieste portate d'aria molto alte.

La ventola, di disegno esclusivo, è autopulente e permette di ottenere massime efficienze. La scocca e il convogliatore d'aria (Venturi) sono in robusta lamiera di acciaio zincato mentre la ventola è disponibile in acciaio inox, acciaio zincato ed acciaio zincato preverniciato.


La ventola a sei pale è bilanciata staticamente e dinamicamente in modo da minimizzare le vibrazioni e la rumorosità.

L'accoppiamento con il motore può essere a trasmissione o diretto, a seconda del modello.

IMPIEGHI ED APPLICAZIONI

Ricambio aria per: capannoni industriali, serre, stalle, magazzini, lavanderie, garage, palestre, ecc.

Diagramma pressione/portata

Misure B C F.

DATI TECNICI

		_	1 117 / 11		Portata max	ID(A)	Ø				Peso					
Modello	Esecuzione	Tensione	kW / Hp	rpm	a 0 mm H ₂ O (m³/h)	dB(A)	girante	Α	В	C	D	E	F	G	Н	(Kg)
ED 24 RR/T	Rete/Rete	Trifase	0,37 / 0,5	900	10600	71	600	745	745	510	590	475	M 8	135	300	44
EM 30 RR/T	Rete/Rete	Trifase	0,55 / 0,75	640	14500	72	760	950	950	450	530	475	M 8	240	295	56
EM 36 RR/T	Rete/Rete	Trifase	0,75 / 1	510	20000	74	915	1090	1090	450	530	600	M 8	245	305	65
EM 50 RR/T	Rete/Rete	Trifase	1,1 / 1,5	430	41000	76	1270	1380	1380	355	425	1315	M 8	30	330	68
ED 24 RS/T	Rete/Serranda	Trifase	0,37 / 0,5	900	10600	71	600	745	745	510	590	475	M 8	135	300	44
EM 30 RS/T	Rete/Serranda	Trifase	0,55 / 0,75	640	14500	72	760	950	950	450	530	475	M 8	240	295	56
EM 36 RS/T	Rete/Serranda	Trifase	0,75 / 1	510	20000	74	915	1090	1090	450	530	600	M 8	245	305	65
EM 50 RS/T	Rete/Serranda	Trifase	1,1 / 1,5	430	41000	76	1270	1380	1380	355	425	1315	M 8	30	330	68
ED 24 RR/M	Rete/Rete	Monofase	0,37 / 0,5	900	10600	71	600	745	745	510	590	475	M 8	135	300	44
EM 30 RR/M	Rete/Rete	Monofase	0,55 / 0,75	640	14500	72	760	950	950	450	530	475	M 8	240	295	56
EM 36 RR/M	Rete/Rete	Monofase	0,75 / 1	510	20000	74	915	1090	1090	450	530	600	M 8	245	305	65
EM 50 RR/M	Rete/Rete	Monofase	1,1 / 1,5	430	41000	76	1270	1380	1380	355	425	1315	M 8	30	330	68
ED 24 RS/M	Rete/Serranda	Monofase	0,37 / 0,5	900	10600	71	600	745	745	510	590	475	M 8	135	300	44
EM 30 RS/M	Rete/Serranda	Monofase	0,55 / 0,75	640	14500	72	760	950	950	450	530	475	M 8	240	295	56
EM 36 RS/M	Rete/Serranda	Monofase	0,75 / 1	510	20000	74	915	1090	1090	450	530	600	M 8	245	305	65
EM 50 RS/M	Rete/Serranda	Monofase	1,1 / 1,5	430	41000	76	1270	1380	1380	355	425	1315	M 8	30	330	68

CARATTERISTICHE

Ventilatori elicoidali con accoppiamento diretto o a trasmissione
Basso numero di giri ed elevata silenziosità
Costruzione telaio in lamiera zincata
Girante in lamiera zincata (optional INOX)
Apertura meccanica ed automatica della serranda
Alto rendimento ed alte portate di lavoro
Costruzione robusta e leggera

ESECUZIONI

RR: Rete Rete
RS: Rete Serranda
Monofase 220 V
Trifase 380 V

OPTIONAL

Codice	Descrizione
R24	Rete di protezione aggiuntiva per ED24
R30	Rete di protezione aggiuntiva per EM30
R36	Rete di protezione aggiuntiva per EM36
R50	Rete di protezione aggiuntiva per EM50
R/EM	Regolatore di velocità

DESCRIZIONE

Elettroventilatori elicoidali da parete, con convogliatore sagomato in lamiera di acciaio stampato, verniciato con polvere epossidica.

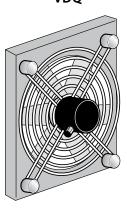
Mozzo pressofuso in lega leggera.

Ventola con pale in:

- MOPLEN per i diametri da 350 a 500 mm;
- NYLON VETRO per i diametri da 600 a 900 mm.

VDL

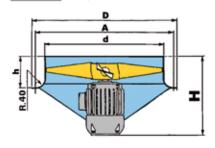
Codice: VDL/***
Solo ventilatore


Codice: VDV/****
Completo di serranda a gravità e supporto in lamiera zincata per montaggio su telaio di vetri.
Misure a richiesta

VDV/LEX

Codice: VDV/****X
Completo di serranda a gravità e supporto in lexan per montaggio su telaio di vetri.
Misure a richiesta

VDQ


Codice: VDQ/****

Completi di struttura di sostegno in vetroresina e rete di protezione

DATI TECNICI

Modello	Ø Ventola (mm)	Fase tensione	Нр	rpm	Portata max (m³/h)	Corrente (Amp)	dB(A)
VDL 350 T - VDV 350 T VDV 350 TX - VDQ 350 T	350	3~	0,25	1400	3800	0,5	61
VDL 400 T - VDV 400 T VDV 400 TX - VDQ 400 T	400	3~	0,25	1400	4500	0,59	65
VDL 500 T - VDV 500 T VDV 500 TX - VDQ 500 T	500	3~	0,33	1400	8000	1,1	70
VDL 600 T - VDV 600 T VDV 600 TX - VDQ 600 T	600	3~	1	1400	10000	2,2	77
VDL 600 T9 - VDV 600 T9 VDV 600/9 TX - VDQ 600 T9	600	3~	0,5	950	8600	1,2	68
VDL 700 T - VDV 700 T VDV 700 TX - VDQ 700 T	700	3~	1,5	950	16000	3	75
VDL 800 T - VDV 800 T VDV 800 TX - VDQ 800 T	800	3~	2	950	22000	3,8	80
VDL 900 T - VDV 900 T VDV 900 TX - VDQ 900 T	900	3~	3	950	25000	5,2	82
VDL 350 M - VDV 350 M VDV 350 MX - VDQ 350 M	500	1~	0,25	1400	3700	0,5	62
VDL 400 M - VDV 400 M VDV 400 MX - VDQ 400 M	400	1~	0,25	1400	4400	0,59	65
VDL 500 M - VDV 500 M VDV 500 MX - VDQ 500 M	500	1~	0,33	1400	7900	1,1	70
VDL 600 M - VDV 600 M VDV 600 MX - VDQ 600 M	600	1~	1	1400	9800	2,2	77
VDL 600 M9 - VDV 600 M9 VDV 600/9 MX - VDQ600 M9	600	1~	0,5	900	8500	2,2	77

MISURE (solo per modelli VDL)

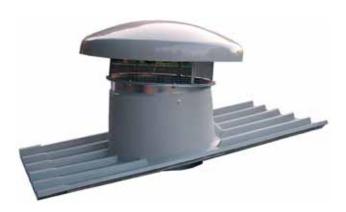
H (mm)	h (mm)	D (mm)	d (mm)	A (mm)	Peso (Kg)
250	125	465	363	430	8
250	125	507	413	480	10
320	135	617	513	590	15
500	135	617	513	590	17
500	135	720	613	680	15
470	170	816	714	780	28
520	170	915	814	880	42
560	170	1015	914	980	55
250	125	465	363	430	9
250	125	507	413	480	10
320	135	617	513	590	15
500	135	617	513	590	17
500	135	617	513	590	17

OPTIONAL

Codice	Descrizione
R/5	Regolatore di velocità 5 Ampere per motori monofase
R/10	Regolatore di velocità 10 Ampere per motori monofase

RICAMBI

Codice	Descrizione
350/R	Rete di protezione conica Ø 350
400/R	Rete di protezione conica Ø 400
500/R	Rete di protezione conica Ø 500
600/R	Rete di protezione conica Ø 600
700/R	Rete di protezione conica Ø 700
800/R	Rete di protezione conica Ø 800
900/R	Rete di protezione conica Ø 900
350/S	Serranda a gravità in PVC 350 x 350
400/S	Serranda a gravità in PVC 400 x 400
500/S	Serranda a gravità in PVC 500 x 500
600/S	Serranda a gravità in PVC 600 x 600
700/S	Serranda a gravità in PVC 700 x 700
350V	Girante completa in polipropilene Ø 350


Codice	Descrizione
400V	Girante completa in polipropilene Ø 400
500V	Girante completa in polipropilene Ø 500
600V	Girante completa in polipropilene Ø 600
700V	Girante completa in polipropilene Ø 700
800V	Girante completa in polipropilene Ø 800
900V	Girante completa in polipropilene Ø 900
350VP	Pala polipropilene per girante Ø 350
400VP	Pala polipropilene per girante Ø 400
500VP	Pala polipropilene per girante Ø 500
600VP	Pala polipropilene per girante Ø 600
700VP	Pala polipropilene per girante Ø 700
800VP	Pala polipropilene per girante Ø 800
900VP	Pala polipropilene per girante Ø 900

DESCRIZIONE

I torrini serie TE sono progettati per l'estrazione dell'aria in ambienti industriali, allevamenti zootecnici e produttivi in genere.

La gamma è prodotta allo scopo di unificare le strutture di ancoraggio a molteplici corpi ventilanti e permette di soddisfare le esigenze di installazione con le più svariate tipologie di coperture.

La struttura portante ed il cappello sono costruiti in resina poliestere, rinforzata con fibre di vetro che rende gli estrattori particolarmente adatti all'esposizione permanente agli agenti atmosferici.

Il ventilatore elicoidale incorporato ha il fusto, il supporto motore e i ferri di sostegno, realizzati in lamiera d'acciaio zincato a caldo (disponibile anche in inox). La ventola ha le pale in polipropilene e nylon-vetro.

Vengono forniti di rete antivolatile che impediscono il contatto con le parti rotanti.

L'esecuzione standard è prevista per installazioni con temperatura ambiente tra 5 e 40 °C.

Un accorgimento particolare viene dedicato al basamento delle unità, che deve assicurare la tenuta contro infiltrazioni d'acqua piovana dal tetto in ambiente.

Sugli apparecchi di buona qualità, per evitare l'ingresso di aria fredda in ambiente e la fuoriuscita di aria calda per effetto camino, sono previste delle serrande che si aprono all'avviamento del ventilatore e si richiudono al suo arresto. Reti di protezione interne impediscono l'ingresso di corpi estranei.

DATITECNICI

84I - II -	Tipo	Ø Girante		D	Tensione	-ID/A)	Peso							Po	rtata	max	(m³/	h)					
Modello	motore	(mm)	нр	Rpm	(V / Fase)	dB(A)	(Kg)		240	780	1080	1620	2100	3240	4200	5220	6600	8580	10200	13380	15360	17640	19800
TE 4/025/T	63B	400	0,25	1350	400 / 3~	66	26		20	19	17	16	15	11	7								
TE 5/05/T	71b	500	0,5	1370	400/3~	71	31				23	22	21	19	18	15	11						
TE 6/1/T	80b	600	1	1380	400/3~	77	40					32	31	30	29	28	26	23	20	12			
TE 6/05/T9	80a	600	0,5	910	400/3~	68	42			18	17.5	17	16.5	16	15.5	15	14	13	12				
TE 6/0306/T79	80a	600	0,25	690	400/3~	66	40	<u>0</u> 2			10	9.7	9.3	9	8.5	8	7	6					
TE 6/1/T9	90S	600	1	940	400/3~	75	49	(mm H		21	20	19	18	17	16	15	12	11	10				
TE 7/2/T9	100L	700	2	930	400/3~	81	67				26	25	24	23	22	21	20	19	18	17	16	15	14
TE 7/075/T7	90L	700	0,75	705	400/3~	68	55	Pressione			13	12.5	12	11.5	11	10.5	10	9	8	7			
TE 4/025/M	B1-63	400	0,25	1370	230 / 1~	66	26	Pre	20	19	17	16	15	11	7								
TE 5/05/M	C2-71	500	0,50	1350	230 / 1~	70	31				23	22	21	19	18	15	11						
TE 6/1/M	D3-80	600	1	1350	230 / 1~	77	40					32	31	30	29	28	26	23	20	12			
TE 6/15/M	I1-90S	600	1,5	1350	230 / 1~	77	45					41	39	37	34	31	24	18	13				
TE 06/05/M9	80a	600	0,5	900	230 / 1~	71	40			18	17.5	17	16.5	16	15.5	15	14	13	12				

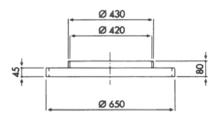
Versione standard fornita con doppia rete di protezione, sottocappello e sottotorrino - Esclusa serranda di gravità.

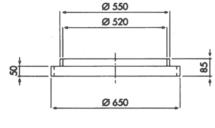
OPTIONAL

Codice	Descrizione				
R/5	Regolatore di velocità 5 Ampere per motori monofase				
R/10	Regolatore di velocità 10 Ampere per motori monofase				
400/TE	Serranda a gravità Ø 400				
500/TE	Serranda a gravità Ø 500				
600/TE	Serranda a gravità Ø 600				
700/TE	Serranda a gravità Ø 700				

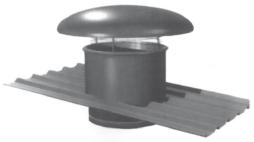
RICAMBI

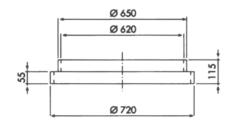
Codice	Descrizione
CAP/TE400	Cappello in vetroresina Ø 400
CAP/TE500	Cappello in vetroresina Ø 500
CAP/TE600	Cappello in vetroresina Ø 600
CAP/TE700	Cappello in vetroresina Ø 700
CON/TE400	Conversa in vetroresina Ø 400
CON/TE500	Conversa in vetroresina Ø 500
CON/TE600	Conversa in vetroresina Ø 600
CON/TE600	Conversa in vetroresina Ø 700


ACCESSORI, SERRANDE, RIDUZIONI


Conversa piana con bordo per tegole. (da Ø 100 a Ø 700)

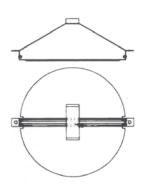
Coperture in fibrocemento per capannoni industriali, officine, ceramiche, ecc.
Aspirante, passo 146/177.
(da Ø 400 a Ø 700)


Riduzione VTR 600/400

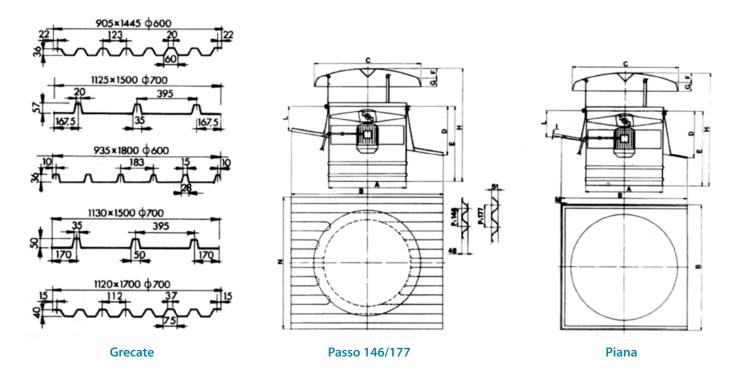

Riduzione VTR 600/500

Conversa a doppia pendenza, passo 177, inclinazione 28,6%. (da Ø 400 a Ø 600)

Conversa per capannoni a copertura in lamiera gracata tipo EGB401/DS. (da Ø 400 a Ø 600)


Riduzione VTR 700/600

Conversa a doppia pendenza, inclinazione 28,6%. (da Ø 400 a Ø 600)



Coperture in fibrocemento per capannoni ad arcata parabolica. Freccia mm. 25, passo 146/177 (da Ø 400 a Ø 600)

Serranda di chiusura a gravità. (da Ø 400 a Ø 500, fino a giri 1400) (da Ø 600 a Ø 700 solo per giri 700/900)

DATI TECNICI

	Modello	A	В	С	D	E	F	G	Н	ı	L	М	N	Р	Ø ventilatore (mm)
	TE 4/025/T (M)	Ø 415	1500 1200 1500	840	330	570	75	70	900	-	235	-	820	146 146/177 177	400
	TE 5/05/T (M)	Ø 515	1500 1224 1500	840	440 355	570	75	70	900	-	285 200	-	1050 920	146 146/177 177	500
Conversa copertura in eternit, passo 146/177	TE 6/1/T (M) TE 6/05/T 9 TE 6/0306/T 79 TE 6/1/T 9 TE 6/15 M	Ø 615	1500 1224 1500	985	355	570	140	90	1000	-	200	-	1050	146 146/177 177	600
	TE 7/2/T 9 TE 7/075/T 9	Ø 715	1500	1090	355	570	75	45	1000	-	200	-	1100	146 177	700
	TE 4/025/T (M)	Ø 415	800	840	330	570	75	70	900	20	245	10	-	-	400
	TE 5/05/T (M)	Ø 515	1000	840	330	570	75	70	900	20	230	10	-	-	500
Conversa piana con bordo per tegole e terrazzi	TE 6/1/T (M) TE 6/05/T 9 TE 6/0306/T 79 TE 6/1/T 9 TE 6/15 M	Ø 615	1000	985	330	570	140	90	1000	20	230	10	-	-	600
per tegore e terrazzi	TE 7/2/T 9 TE 7/075/T 9	Ø 715	1270 x 1240	1090	335	570	75	45	1000	20	230	10	-	-	700
1	TE 4/025/T	Ø 415	1400	840	440	570	75	70	900	-	290	-	895	75	400
Conversa copertura in lastre di lamiera, passo 75	TE 5/05/T	Ø 515	1400	840	340	570	75	70	900	-	190	-	895	75	500

IL RAFFRESCAMENTO

Fin dall'antichità l'uomo ha utilizzato il sistema basato sull'evaporazione dell'acqua per difendersi dai climi caldi. Possiamo semplificare il concetto spiegando che l'abbassamento della temperatura dell'aria può avvenire naturalmente in quanto, facendo passare una massa d'aria attraverso una barriera d'acqua, la stessa, per evaporare, ha bisogno d'energia, ovvero calore, che viene sottratto all'aria, che quindi si raffredda.

Attualmente questo sistema è una delle poche alternative al condizionamento tradizionale, il quale per consumi energetici, costi di manutenzione e di esercizio, risulta di difficile applicazione in molti grandi ambienti. Lo sviluppo di questa tecnica ha consentito la sua applicazione in larga scala con ottimi risultati.

Le unità di raffrescamento sono adatte a varie tipologie di utilizzo, con diverse potenzialità.

Gli umidificatori sono macchine destinate all'umidificazione e al raffrescamento dell'aria per il controllo dell'umidità e della temperatura in luoghi chiusi. Sono particolarmente indicati in serre ed allevamenti.

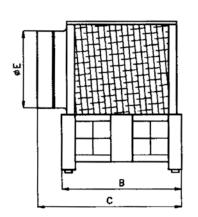
È sempre consigliabile far posizionare gli umidificatori da una persona competente a conoscenza delle caratteristiche climatiche e dei metodi colturali della zona.

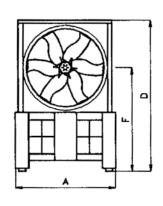
Il raffrescatore può anche essere utilizzato con una guaina forata per la distribuzione dell'aria umidificata. La guaina deve seguire una perfetta linea retta, in quanto ogni curva, anche minima, produrrebbe una piega che con il tempo e le sollecitazioni darebbero origine ad uno strappo. Deve essere costruita senza strozzature sull'uscita, con i fori in numero e diametro appropriati, per evitare un dannoso affaticamento del motore della ventola che può causare un notevole calo di portata.

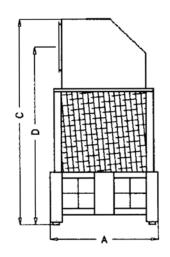
SETTORI DI IMPIEGO

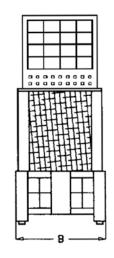
Strutture industriali; Laboratori artigianali; Show rooms e mostre; Industrie manifatturiere; Magazzini; Palestre; Chiese; Tensostrutture; Industrie materie plastiche; Tipografie e cartiere.

			Umidità relativa esterna						
		15%	30%	40%	50%	60%			
tura (°C)	30	18	20	22	24	24			
Temperatura esterna (°C)	35	21	24	26	28	30			
Ten est	40	25	28	31	33	34			








DATI TECNICI VERSIONE MT

Modello	Portata max (m³/h)	V	Hz	Amp.	Tipo	kW/Hp	Rpm	Numero poli	Ø ventola	Α	В	С	D	ØE	F
MT 30	16000	220-380	50	3,5	3~	1,1/1,5	900	6	780	1000	1200	1470	1510	780	1030
MT 30 C	16000	220-380	50	3,5	3~	1,1/1,5	900	6	780	1200	1000	2500	2150	-	-

Modello MT 30

Modello MT 30 C

DATITECNICI VERSIONE CA

Modello	Portata max (m³/h)	V	Hz	kW	Dimensioni L x L x H (mm)	Peso a vuoto (Kg)	Peso con acqua (Kg)
FCA 100	10000	230	50	0,8	1300 x 670 x 1300	60	85
CA 100	10000	230	50	0,8	1150 x 1150 x 800	51	76
CA 150	13000	230	50	1,5	1150 x 1150 x 1050	67	92
CA 200	20000	230	50	1,7	1650 x 1150 x 1050	91	119

Versione CA

PRINCIPIO DI FUNZIONAMENTO

Nei periodi caldi la preoccupazione principale, su cui basare il dimensionamento della ventilazione, è quella di eliminare il calore sensibile prodotto al fine di evitare un eccessivo aumento della temperatura.

Il volume di ventilazione estivo risulta dalla formula: $Ve(m^3/h) = Qs/(0,31 \times \Delta t)$ (dove $Qs = calore sensibile prodotto (Kcal/h); 0,31 = calore specifico dell'aria (Kcal/m³); <math>\Delta t = aumento di temperatura in °C rispetto all'esterno, che accetto all'interno).$

I valori dipendono, oltre che dal calore sensibile, come si vede, ancor più dal Δt ammesso; questo valore si fissa normalmente sui 3-4 °C per evitare portate eccessivamente elevate.

In un semplice processo di variazione della temperatura, l'entalpia scambiata dal sistema per variazioni unitarie di temperatura è data dalla capacità termica a pressione costante.

La definizione formale dell'entalpia è: $\mathbf{H} = \mathbf{U} + \mathbf{PV}$ (dove U rappresenta l'energia interna dei sistema; p è la pressione; V è il volume).

Poiché sia U, come p e V dipendono unicamente dallo stato dei sistema, anche H dipende unicamente dallo stato; essendo U e V grandezze estensive, anche l'entalpia è una grandezza estensiva; si ha quindi, per un corpo omogeneo: H=P-h (essendo P il peso del corpo ed H l'entalpia specifica).

In un sistema chiuso vi sono due modi per variare l'energia interna: compiendo lavoro su di esso (o facendo in modo che esso compia lavoro sull'ambiente), oppure fornendo calore (o sottraendo calore). I due modi sono perfettamente equivalenti, nel senso che lavoro e calore sono due forme di energia indistinguibili da parte dei sistema. **Mollier** è riuscito a far figurare nello stesso diagramma oltre alla temperatura, anche altre grandezze come, per esempio, la pressione parziale pH₃0 o l'umidità relativa j.

Le varie grandezze termodinamiche non devono sempre essere ricalcolate da capo, ma possono essere lette direttamente dal diagramma h(x). Sul diagramma è presentato anche un esempio mediante il quale si può capire meglio la praticità di tale rappresentazione. Nell'applicazione alla pratica del principio della termodinamica enunciato avremo l'effetto di raffrescamento prodotto dal nostro sistema.

A - Rappresenta le caratteristiche dell'aria all'esterno del sistema

Applicando il raffrescamento evaporativo avremo un abbassamento della temperatura che sarà calcolato in base all'entalpia costante in quanto dal "sistema" non viene consumata energia per il raffreddamento dell'aria.

B - Indica le caratteristiche dell'aria subito dopo il trattamento con "raffrescatore evaporativo"

Ovviamente quest'aria, entrando in ambiente subirà un riscaldamento provocato dalla presenza delle persone e dei macchinari funzionanti; questa variazione può essere ipotizzabile in C considerando i 3 °C aggiunti come il riscaldamento medio accettato in ambienti ventilati artificialmente in condizione estiva.

I consumi d'acqua necessari per ottenere i livelli di raffrescamento proposti (efficienza 75%) sono elencati nella tabella seguente (consumi espressi in litri per 16000 m³/h, per 8 ore funzionamento).

DEFINIZIONI

Temperatura bulbo secco:

temperatura rilevata mediante normale termometro.

<u>Temperatura bulbo umido</u> (o di saturazione adiabatica):

temperatura rilevata mediante termometro a cui è stata applicata sul bulbo una garza imbevuta di acqua distillata e tenuta sotto costante ventilazione (oltre 3 m/s). Si assiste alla vaporizzazione dell'acqua della garza, ciò comporta una diminuzione dell'energia interna e perciò di temperatura della fase liquida sulla garza.

Umidità relativa:

è il rapporto, in genere espresso in percentuale, tra la pressione parziale del vapore e la pressione del vapore saturo valutate alla stessa temperatura. Può variare tra un minimo di 0% (assenza di vapore acqueo) ad un massimo del 100% (aria satura).

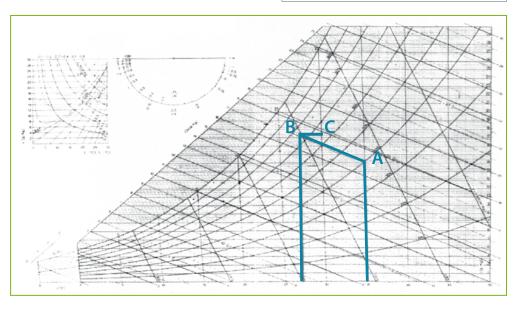
Psicrometro:

strumento dotato di due termometri (bulbo secco e bulbo umido) che consente di determinare l'umidità relativa.

Entalpia:

l'entalpia dell'aria umida è una funzione di stato che rappresenta, in termodinamica, il suo contenuto energetico. Si può tradurre come somma di due elementi: aria secca e vapore d'acqua; quindi la stessa equivale alla somma di calore sensibile e calore latente.

Calore sensibile:


è il calore che percepiamo normalmente, misurabile con un normale termometro.

Calore latente:

è la quantità di calore necessaria per cambiare lo stato di un corpo senza modificare la sua temperatura. Questo calore non viene percepito dall'uomo.

		Umidità relativa dell'aria						
		30%	40%	50%	60%			
ari	26 ℃	460,8	345,6	144	86,4			
	28 °C	576	403,2	259,2	144			
Temperatura	30 °C	547,2	432	288	144			
Te.	32 ℃	576	403,2	316,8	86,4			

Da quanto sopra esposto si può determinare il costo di esercizio del sistema tenendo conto ovviamente anche delle potenze elettriche installate sui diversi modelli di macchina.

DEFINIZIONE

Come definizione di ventilatore può essere considerata quella riportata nella vecchia norma UNI: "un ventilatore è una macchina operatrice rotante che trasmette al fluido che la attraversa una determinata energia sotto forma di aumento di pressione, per le quali il rapporto tra la pressione totale alla mandata e la pressione totale all'aspirazione non supera il valore di 1,2".

DESCRIZIONE

Grazie alla grande esperienza maturata nel campo della movimentazione aria, abbiamo sviluppato con successo la divisione ventilatori offrendo un prodotto che risponde in modo avanzato alle molteplici applicazioni cui è destinato.

Realizziamo ventilatori centrifughi in grado di coprire una vasta gamma di portate e prevalenze. La produzione di serie prevede vari modelli con accoppiamento diretto o a trasmissione.

A richiesta vengono realizzati ventilatori speciali, ventilatori in acciaio inox, ventilatori in materiali plastici o rivestiti con materiali plastici.

Parallelamente siamo in grado di fornire accessori quali regolatori di portata (DAPO', valvole a farfalla, inverter, motori, controflange).

Ventilatore con accoppiamento a trasmissione

VALORI DI VELOCITÀ DELL'ARIA DA TENERE NEI CONDOTTI, IN FUNZIONE DEL MATERIALE DA TRASPORTARE

Tipo di materiale	Velocità	Tipo di materiale	Velocità
Polveri di cereali	18÷20 m/sec	Fumi di fonderia e fumi di saldatura	15÷18 m/sec
Polveri di vernice	18÷20 m/sec	Polveri di smerigliatura, pulitura, ecc.	20÷25 m/sec
Trucioli di legno e segatura	22÷27 m/sec	Fumi di solventi di sgrassatura	12÷18 m/sec
Polvere secca di prodotti chimici	18÷20 m/sec	Trucioli e polveri metalliche	25÷38 m/sec
Polvere di carbone	20÷25 m/sec	Polvere di gomma	18÷20 m/sec
Polveri di materie plastiche	20÷23 m/sec	Polveri tossiche di ogni genere	15÷25 m/sec

SERIE D

Diretti (DTD) - Trasmissione (TRD)

Accoppiamento diretto e a trasmissione.

Bassa pressione.

Girante a pale curve in avanti.

Settore d'impiego: aria pulita o leggermente polverosa.

Tip	00	Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)
DTD	o	180÷20000	13÷225	0,12÷18,5	80÷150*
TRD	<u></u>	1600÷96000	33÷180	0,75÷45	90÷350*

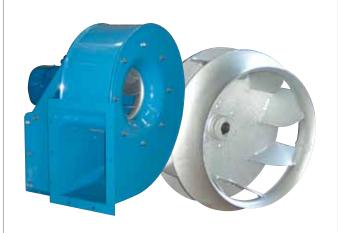
^{*} Con ventolina di raffreddamento

SERIE M Diretti (DTM) - Trasmissione (TRM)

Accoppiamento diretto o a trasmissione.
Pressione bassa e media.
Girante a pale rovesce ad alto rendimento.
Settore d'impiego: aria molto polverosa con materiale in forma granulosa.

Tip	00	Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)
DTM	©	378÷37800	42÷530	0,18÷45	80÷150*
TRM	<u></u>	1600÷96000	44÷500	1,1÷132	90÷350*

^{*} Con ventolina di raffreddamento


SERIE E Diretti (DTE) - Trasmissione (TRE)

Accoppiamento diretto e a trasmissione.

Bassa pressione.

Girante a pale rovesce ad alto rendimento.

Settore d'impiego: aria pulita o leggermente polverosa.

Tip	00	Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)	
DTE	©	1320÷96000	10÷390	0,25÷75	80÷150*	
TRE		2400÷216000	27÷430	0,75÷200	90÷350*	

^{*} Con ventolina di raffreddamento

SERIE O Diretti (DTO) - Trasmissione (TRO)

Accoppiamento diretto o a trasmissione.
Pressione bassa e media.
Girante a pale rovesce ad alto rendimento.
Settore d'impiego: aria molto polverosa con materiale in forma granulosa.

Tipo		Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)
DTO	©	378÷37800	64÷670	0,37÷45	80÷150*
TRO	<u></u>	1200÷170000	100÷900	1,5÷250	90÷350*

^{*} Con ventolina di raffreddamento

SERIE H-V Diretti (DTH-V) - Trasmissione (TRV)

Accoppiamento diretto e a trasmissione. Pressione bassa e media. Girante a pale rovesce ad alto rendimento a ridotta rumorosità. Settore d'impiego: aria molto polverosa con materiale in forma leggermente granulosa.

Tipo		Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)	
DTH-V	<u></u>	378÷54000	74÷570		80÷150*	
TRV		2300÷132000	90÷850	3÷160	90÷350*	

^{*} Con ventolina di raffreddamento

SERIE Q-R-X Diretti (DTQ-R-X) - Trasmissione (TRQ-R)

Accoppiamento diretto e a trasmissione.
Pressione media e alta.
Girante a pale aperte.
Settore d'impiego: aria molto polverosa e trasporto materiale,
trasporto rifili (possibilità di ventola con stracciacarta).

Tipo		Portata max (m³/h)	ΔP max (mm H ₂ O)	kW	T max (°C)	
DTQ-R-X		180÷54000	160÷1310	2,2÷110	80÷150*	
TRQ-R	<u></u>	180÷24000	200÷1250	0,75÷55	90÷350*	

^{*} Con ventolina di raffreddamento

SERIE S-T Diretti (DTS-T) - Trasmissione (TRS)

Accoppiamento diretto e a trasmissione. Pressione bassa e media. Girante a pale aperte. Settore d'impiego: aria molto polverosa e trasporto materiale.

Tipo		Portata max (mm H ₂ O)		kW	T max (°C)	
DTS-T	o	480÷18900	71÷372	0,37÷22	80÷150*	
TRS	<u></u>	1200÷132000	50÷450	1,5÷200	90÷350*	

^{*} Con ventolina di raffreddamento

SERIE I-J Diretti (DTI-J) - Trasmissione (TRI-J)

Accoppiamento diretto e a trasmissione.
Pressione media e alta.
Girante a pale rovesce ad alto rendimento a ridotta rumorosità.
Settore d'impiego: aria polverosa.

Tipo		Portata max (m³/h) ΔP max (mm H ₂ O)		kW	T max (°C)	
DTI-J	o o	120÷54000	110÷2800	0,37÷250	80÷150*	
TRI-J	<u></u>	900÷185000	180÷2600	2,2÷250	90÷350*	

^{*} Con ventolina di raffreddamento

SCELTA DEL VENTILATORE

Per la corretta determinazione del ventilatore, il peso specifico Ps (kg/m³) del fluido è il punto di partenza.

Per determinare il Ps occorre conoscere in particolare:

- · temperatura di esercizio;
- pressione barometrica o altitudine di installazione.

Le prestazioni dei ventilatori sono riferite ad un peso specifico "standard" del fluido: **Ps = 1,226 kg/m**³.

Per "standard" si intende valutato alle seguenti condizioni:

- pressione barometrica: Pb = 101325 Pa
 (= 1,01325 bar = 760 mmHg a 0 metri sul livello del mare);
- fluido aria secca a t = 15 °C con 0% di umidità;
- ventilatore funzionante con la bocca aspirante libera e con una tubazione alla bocca premente secondo le norme UNI.

Nel caso il ventilatore operi con fluidi a temperature diverse o ad altitudini maggiori rispetto a 0 metri sul livello del mare, si devono correggere i valori al fine di individuare il giusto ventilatore per operare a quelle condizioni.

A scopo esemplificativo consideriamo di dover installare un ventilatore avente le medesime prestazioni in due condizioni differenti.

Prestazioni richieste:

Portata: 15000 m³/h

Pressione totale: 100 mm H₃O

Condizioni:

A) Installazione a livello del mare, quindi alla pressione barometrica 760 mm Hg, fluido aria a 20 °C.

B) Installazione in quota (H=2000 metri sul livello del mare) quindi alla pressione barometrica Pb=598 mm Hg (vedi tabella), fluido aria a $125^{\circ}C$.

Nella condizione A) si deve ricercare un ventilatore con i valori uguali a quelli delle prestazioni richieste.

Nella condizione B) bisogna prima di tutto determinare il Ps corrispondente ai valori di temperatura e altitudine di esercizio.

Tramite la formula:

$$Ps=1,293\left(\frac{273}{273+t}\right)\frac{Pb}{760} \qquad Ps=1,293\left(\frac{273}{273+125}\right)\frac{598}{760}$$

dove t e Pb sono rispettivamente la temperatura e pressione barometrica di esercizio.

risulta un $Ps = 0,697 \text{ kg/m}^3$.

A questo punto tramite la formula:

$$Pt_2 = Pt_1 \frac{Ps_2}{Ps_1}$$
 $Pt_2 = 100 \frac{1,226}{0,697}$

siamo in grado di determinare il valore di pressione, a condizioni standard, necessario per garantire le caratteristiche richieste nelle condizioni ambientali specificate.

Ne risulta che Pt, = 176 mm H,O

Conclusioni: per ottenere un flusso d'aria di 15000 m³/h con 70 mm $\rm H_2O$ di pressione (alle condizioni di esercizio) è necessario selezionare un ventilatore in grado di fornire a condizioni standard 15000 m³/h con 176 mm $\rm H_2O$ di pressione.

Condizione	Portata massima (m³/h)	Peso specifico Ps (kg/m³)	Pt richiesta (mm H ₂ O)	Ps selezione a catalogo (mm H ₂ O)
A	15000	1,226	100	100
В	15000	0,697	100	176

Altitudine (m slm)	0	200	400	600	1000	1500	2000	2500	3000	4000
Pressione barometrica (mm Hg)	760	742	724	707	674	634	598	560	530	470